论文标题

一排有色$ \ mathfrak {sl} _3 $ jones多项式的零稳定性

The zero stability for the one-row colored $\mathfrak{sl}_3$ Jones polynomial

论文作者

Yuasa, Wataru

论文摘要

彩色系数的稳定性($ \ mathfrak {sl} _2 $ - )现在,这种稳定性称为$ j_ {k,n}^{\ mathfrak {sl} _2}(q)$的零稳定性。 Armond通过使用基于Kauffman支架的线性绞线理论来显示$ b $ eapequate链接的零稳定性。在本文中,我们证明了一行彩色$ \ mathfrak {sl} _ {3} $ - 琼斯多项式$ \ {基于Kuperberg的$ \ Mathfrak {SL} _3 $ -Webs。它意味着存在与$ \ mathfrak {sl} _3 $相关的量子不变的许多$ q $ series的存在。

The stability of coefficients of colored ($\mathfrak{sl}_2$-) Jones polynomials $\{J_{K,n}^{\mathfrak{sl}_2}(q)\}_n$ was discovered by Dasbach and Lin. This stability is now called the zero-stability of $J_{K,n}^{\mathfrak{sl}_2}(q)$. Armond showed zero stability for a $B$-adequate link by using the linear skein theory based on the Kauffman bracket. In this paper, we prove the zero stability of one-row colored $\mathfrak{sl}_{3}$-Jones polynomials $\{J_{K,n}^{\mathfrak{sl}_3}(q)\}_n$ for $B$-adequate links $L$ with anti-parallel twist regions by using the linear skein theory based on Kuperberg's $\mathfrak{sl}_3$-webs. It implies the existence of many $q$-series obtained from a quantum invariant associated with $\mathfrak{sl}_3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源