论文标题

方向扫荡马尔可夫连锁店

Direction-sweep Markov chains

论文作者

Qin, Liang, Hoellmer, Philipp, Krauth, Werner

论文摘要

我们讨论了一种非可逆的,提起的马尔可夫链蒙特卡洛(MCMC)算法,用于粒子系统,其中确定性地改变了所提出的位移的方向。该算法与流行的MCMC扫描方法类似地扫描了粒子或自旋指数的方法。方向扫荡MCMC可以应用于多种原始可逆或不可逆的马尔可夫链,例如大都会算法或事件链蒙特卡洛算法。对于单个二维偶极子,我们考虑在更改方向之前达到可访问构型之间达到限制平衡的极限方向扫描MCMC。我们严格地表明,扫荡MCMC的固定概率分布不变,并且深刻地修改了马尔可夫链轨迹。长途旅行,沿一个方向持续旋转,与长序列的快速曲折序列交替,导致在小方向增量极限的相反方向上持续旋转。然后,映射到langevin方程,得出了偏移的精确尺度,而曲折的曲线是通过精确求解的非线性微分方程来描述的。我们表明,与随机更新方向更新的算法相比,方向扫描算法的混合时间可能更短。我们指出了在聚合物物理学和分子模拟中,方向扫描MCMC的可能应用。

We discuss a non-reversible, lifted Markov-chain Monte Carlo (MCMC) algorithm for particle systems in which the direction of proposed displacements is changed deterministically. This algorithm sweeps through directions analogously to the popular MCMC sweep methods for particle or spin indices. Direction-sweep MCMC can be applied to a wide range of original reversible or non-reversible Markov chains, such as the Metropolis algorithm or the event-chain Monte Carlo algorithm. For a single two-dimensional dipole, we consider direction-sweep MCMC in the limit where restricted equilibrium is reached among the accessible configurations before changing the direction. We show rigorously that direction-sweep MCMC leaves the stationary probability distribution unchanged, and that it profoundly modifies the Markov-chain trajectory. Long excursions, with persistent rotation in one direction, alternate with long sequences of rapid zigzags resulting in persistent rotation in the opposite direction in the limit of small direction increments. The mapping to a Langevin equation then yields the exact scaling of excursions while the zigzags are described through a non-linear differential equation that is solved exactly. We show that the direction-sweep algorithm can have shorter mixing times than the algorithms with random updates of directions. We point out possible applications of direction-sweep MCMC in polymer physics and in molecular simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源