论文标题

Jacobi-trudi身份和超级扬尼亚人的Drinfeld函数

Jacobi-Trudi identity and Drinfeld functor for super Yangian

论文作者

Lu, Kang, Mukhin, Evgeny

论文摘要

我们表明,量子berezinian赋予与超级扬式$ \ mathrm {y}相关运动积分的生成函数图。 在此过程中,我们开发了$ \ mathrm {y}(\ mathfrak {gl} _ {m | n})$的代表理论的几个部分,例如$ q $ - character理论,jacobi-trudi Identity,jacobi-trudi,drinfeld funct,Drinfeld函数,扩展T-Systems,Harish-Chandra Map。

We show that the quantum Berezinian which gives a generating function of the integrals of motions of XXX spin chains associated to super Yangian $\mathrm{Y}(\mathfrak{gl}_{m|n})$ can be written as a ratio of two difference operators of orders $m$ and $n$ whose coefficients are ratios of transfer matrices corresponding to explicit skew Young diagrams. In the process, we develop several missing parts of the representation theory of $\mathrm{Y}(\mathfrak{gl}_{m|n})$ such as $q$-character theory, Jacobi-Trudi identity, Drinfeld functor, extended T-systems, Harish-Chandra map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源