论文标题
simpose:从模拟数据中有效地学习人的茂密和表面正常
SimPose: Effectively Learning DensePose and Surface Normals of People from Simulated Data
论文作者
论文摘要
随着通用领域适应方法的扩散,我们报告了一种简单而有效的技术,可以学习困难的人均2.5d和3D回归表示。我们获得了2.5D密度估计任务和3D人体表面正常估计任务的强大SIM到现实域的概括。在多人密集的MSCOCO基准上,我们的方法的表现优于最先进的方法,这些方法经过密集标记的真实图像进行培训。这是一个重要的结果,因为在真实图像上获得人类歧管的固有紫外线坐标是耗时,并且容易标记噪声。此外,我们在MSCOCO数据集上介绍了模型的3D表面正常预测,该预测缺乏任何实际的3D表面正常标签。我们方法的关键是通过从域样本的混合物,深层批准的残留网络和改进的多任务学习目标中进行精心选择的培训批次来减轻“域间协变量”。我们的方法是对现有域适应技术的补充,可以应用于其他像素姿势估计问题。
With a proliferation of generic domain-adaptation approaches, we report a simple yet effective technique for learning difficult per-pixel 2.5D and 3D regression representations of articulated people. We obtained strong sim-to-real domain generalization for the 2.5D DensePose estimation task and the 3D human surface normal estimation task. On the multi-person DensePose MSCOCO benchmark, our approach outperforms the state-of-the-art methods which are trained on real images that are densely labelled. This is an important result since obtaining human manifold's intrinsic uv coordinates on real images is time consuming and prone to labeling noise. Additionally, we present our model's 3D surface normal predictions on the MSCOCO dataset that lacks any real 3D surface normal labels. The key to our approach is to mitigate the "Inter-domain Covariate Shift" with a carefully selected training batch from a mixture of domain samples, a deep batch-normalized residual network, and a modified multi-task learning objective. Our approach is complementary to existing domain-adaptation techniques and can be applied to other dense per-pixel pose estimation problems.