论文标题

除了爱因斯坦的一般相对论:混合度量 - 帕拉蒂尼重力和曲率 - 耦合

Beyond Einstein's General Relativity: Hybrid metric-Palatini gravity and curvature-matter couplings

论文作者

Harko, Tiberiu, Lobo, Francisco S. N.

论文摘要

爱因斯坦的一般相对论(GR)可能是人类思想所构想的最伟大的知识成就之一。实际上,在上个世纪,GR已被证明是一个非常成功的理论,具有良好的实验基础。然而,发现后期宇宙加速度的发现代表了管理引力场方程中的新不平衡,迫使理论家和实验者质疑GR是否是正确的重力相对论,并且在修改后的重力中刺激了很多研究,在此,在吉尔伯特 - Iinstein Action的扩展描述了Graftitational Action Fielt。在这篇综述中,我们对两个在很大程度上探索的$ f(r)$ gravity的扩展的详细理论和现象学分析,即:(i)混合度量公制理论; (ii)和带有曲率 - 耦合的重力。相对于前者,已经确定了$ f(r)$重力的公制版本和帕拉蒂尼版本具有有趣的功能,但也表现出严重的缺点。混合组合包含了这两种形式主义的元素,在考虑到观察到的现象学方面非常成功,并避免了原始方法的一些缺点。相对于曲率 - 耦合理论,这些提供了$ f(r)$重力的有趣扩展,其中,标量曲率$ r $的任意功能与物质的拉格朗日密度之间的明显非微小耦合诱导了不变的能量衍生物能量衍生物能量莫恩的衍生物。我们在多种应用中广泛探讨了这两种理论,即弱场极限,银河系和外层面动力学,宇宙学,出色的型紧凑型物体,不可逆的物质创造过程以及特定曲率 - 曲率 - 曲率 - 曲线的量子宇宙学的量子宇宙学。

Einstein's General Relativity (GR) is possibly one of the greatest intellectual achievements ever conceived by the human mind. In fact, over the last century, GR has proven to be an extremely successful theory, with a well established experimental footing. However, the discovery of the late-time cosmic acceleration, which represents a new imbalance in the governing gravitational field equations, has forced theorists and experimentalists to question whether GR is the correct relativistic theory of gravitation, and has spurred much research in modified gravity, where extensions of the Hilbert-Einstein action describe the gravitational field. In this review, we perform a detailed theoretical and phenomenological analysis of two largely explored extensions of $f(R)$ gravity, namely: (i) the hybrid metric-Palatini theory; (ii) and modified gravity with curvature-matter couplings. Relative to the former, it has been established that both metric and Palatini versions of $f(R)$ gravity possess interesting features but also manifest severe drawbacks. A hybrid combination, containing elements from both of these formalisms, turns out to be very successful in accounting for the observed phenomenology and avoids some drawbacks of the original approaches. Relative to the curvature-matter coupling theories, these offer interesting extensions of $f(R)$ gravity, where the explicit nonminimal couplings between an arbitrary function of the scalar curvature $R$ and the Lagrangian density of matter, induces a non-vanishing covariant derivative of the energy-momentum tensor. We extensively explore both theories in a plethora of applications, namely, the weak-field limit, galactic and extragalactic dynamics, cosmology, stellar-type compact objects, irreversible matter creation processes and the quantum cosmology of a specific curvature-matter coupling theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源