论文标题
具有光学无感应衰变检测
All-Optical Single-Species Cesium Atomic Comagnetometer with Optical Free Induction Decay Detection
论文作者
论文摘要
原子孔测定器同时测量重叠物种的自旋进动频率,被广泛应用于搜索异国情调的自旋依赖性相互作用。在这里,我们提出并基于Hyperfine级别的CS原子的光学自由感应衰减(FID)信号$ f_g = 3〜 \&〜4 $基于相同原子集合中的CS原子的光学无感应衰减(FID)信号。我们通过实验表明,磁场梯度和激光场引起的系统误差在comagnetometer中受到了高度抑制,但是在屏蔽中残留磁场的异步光学泵送和诱导的系统误差会占据了盾牌计的不确定性。使用此comagnetometer系统,我们以$ 10^{ - 18} $ eV的级别设置了质子自旋重力耦合强度的约束,与最严格的耦合相媲美。通过在磁场稳定和自旋极化方面进行进一步优化,可以有效地抑制系统误差,并可以改善信噪比(SNR),有望在自旋 - 重力相互作用上设置更严格的约束。
Atomic comagnetometers, which measure the spin precession frequencies of overlapped species simultaneously, are widely applied to search for exotic spin-dependent interactions. Here we propose and implement an all-optical single-species Cs atomic comagnetometer based on the optical free induction decay (FID) signal of Cs atoms in hyperfine levels $F_g=3~\&~4$ within the same atomic ensemble. We experimentally show that systematic errors induced by magnetic field gradients and laser fields are highly suppressed in the comagnetometer, but those induced by asynchronous optical pumping and drift of residual magnetic field in the shield dominate the uncertainty of the comagnetometer. With this comagnetometer system, we set the constraint on the strength of spin-gravity coupling of the proton at a level of $10^{-18}$ eV, comparable to the most stringent one. With further optimization in magnetic field stabilization and spin polarization, the systematic errors can be effectively suppressed, and signal-to-noise ratio (SNR) can be improved, promising to set more stringent constraints on spin-gravity interactions.