论文标题
基于基础设施的多摄像机校准使用径向投影
Infrastructure-based Multi-Camera Calibration using Radial Projections
论文作者
论文摘要
多摄像机系统是智能系统(例如自动驾驶汽车)的重要传感器平台。基于模式的校准技术可用于单独校准摄像机的固有。但是,对摄像机之间几乎没有视觉重叠的系统的外部校准是一个挑战。鉴于摄像头的内在,基于进额的校准技术能够使用3D地图通过大满贯或结构从胶片中构建的3D地图来估算外部设备。在本文中,我们建议使用基于基础架构的方法从头开始完全校准多相机系统。假设失真主要是径向,我们引入了两阶段的方法。我们首先将相机-RIG的外部设备估算为每个相机的单个未知翻译组件。接下来,我们解决了内在参数和丢失的翻译组件。在多个室内和室外场景上进行多个多摄像头系统的广泛实验表明,我们的校准方法可实现高精度和鲁棒性。特别是,我们的方法比首先估算固有参数和每个摄像头姿势的天真方法更强大,然后才能完善系统的外部参数。该实现可在https://github.com/youkely/infrascal上获得。
Multi-camera systems are an important sensor platform for intelligent systems such as self-driving cars. Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually. However, extrinsic calibration of systems with little to no visual overlap between the cameras is a challenge. Given the camera intrinsics, infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion. In this paper, we propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach. Assuming that the distortion is mainly radial, we introduce a two-stage approach. We first estimate the camera-rig extrinsics up to a single unknown translation component per camera. Next, we solve for both the intrinsic parameters and the missing translation components. Extensive experiments on multiple indoor and outdoor scenes with multiple multi-camera systems show that our calibration method achieves high accuracy and robustness. In particular, our approach is more robust than the naive approach of first estimating intrinsic parameters and pose per camera before refining the extrinsic parameters of the system. The implementation is available at https://github.com/youkely/InfrasCal.