论文标题
高阶小型班和兰道级兰道级重建
High-order minibands and interband Landau level reconstruction in graphene moire superlattice
论文作者
论文摘要
石墨烯中狄拉克·费米斯(Dirac Fermions)通过长期周期性势能传播,将导致频带折叠,并出现一系列克隆的狄拉克点(DPS)。在高度排列的石墨烯/六角硼硝酸盐(G/HBN)异质结构中,两个原子晶体之间的格子不匹配产生了一种独特的周期性结构,称为Moiré超级晶格。特别感兴趣的是与石墨烯的重建带结构相关的新兴现象,例如霍夫斯塔特蝴蝶,拓扑流,依赖门依赖的假蛋白混合和弹道小型型小型传导。但是,到目前为止,大多数研究都仅限于低阶小型班。第一和第二个小型班级从电荷中立计算,因此,重建的高阶小型光谱的基本性质仍然很大程度上是未知的。在这里,我们报告了通过运输光谱探测精确排列的石墨烯Moiré超级晶格的高阶小型。使用双重静电门控,可以到达这些高阶迷你班的边缘,即第三和第四个迷你吧。有趣的是,我们已经观察到在多型磁通型转运状态下的频带间Landau水平(LL)交叉诱导间隙封闭,该磁场始于第二和第三小班之间的频带重叠。正如观察到的高阶小型和LL重建定性与我们的模拟结果相匹配的。我们的发现突出了小型班轮在运输中的协同作用,从而为石墨烯电子设备带来了新的机会。
The propagation of Dirac fermions in graphene through a long-period periodic potential would result in a band folding together with the emergence of a series of cloned Dirac points (DPs). In highly aligned graphene/hexagonal boron nitride (G/hBN) heterostructures, the lattice mismatch between the two atomic crystals generates a unique kind of periodic structure known as a moiré superlattice. Of particular interests is the emergent phenomena related to the reconstructed band-structure of graphene, such as the Hofstadter butterfly, topological currents, gate dependent pseudospin mixing, and ballistic miniband conduction. However, most studies so far have been limited to the lower-order minibands, e.g. the 1st and 2nd minibands counted from charge neutrality, and consequently the fundamental nature of the reconstructed higher-order miniband spectra still remains largely unknown. Here we report on probing the higher-order minibands of precisely aligned graphene moiré superlattices by transport spectroscopy. Using dual electrostatic gating, the edges of these high-order minibands, i.e. the 3rd and 4th minibands, can be reached. Interestingly, we have observed interband Landau level (LL) crossinginducing gap closures in a multiband magneto-transport regime, which originates from band overlap between the 2nd and 3rd minibands. As observed high-order minibands and LL reconstruction qualitatively match our simulated results. Our findings highlight the synergistic effect of minibands in transport, thus presenting a new opportunity for graphene electronic devices.