论文标题
光子:强大的跨域文本到SQL系统
Photon: A Robust Cross-Domain Text-to-SQL System
论文作者
论文摘要
自然语言与数据库(NLIDB)的界面使最终用户对关系数据的访问民主化。由于自然语言沟通和编程之间的根本差异,最终用户发出对系统模棱两可的问题或属于其基础查询语言的语义范围之外的问题是很常见的。我们提出了一个稳健的,模块化的跨域NLIDB,可以标记无法立即确定SQL映射的自然语言输入。光子由一个强大的神经语义解析器(蜘蛛dev基准上的63.2 \%结构精度),一个循环的纠正剂,SQL执行器和响应发生器。校正器是一个歧视性神经序列编辑器,它在输入问题中检测混淆跨度,并建议对用户提供可翻译输入或进行最大数量的迭代。模拟数据上的实验表明,所提出的方法有效地提高了文本到SQL系统对不可转移的用户输入的鲁棒性。我们系统的实时演示可在http://naturalsql.com上获得。
Natural language interfaces to databases (NLIDB) democratize end user access to relational data. Due to fundamental differences between natural language communication and programming, it is common for end users to issue questions that are ambiguous to the system or fall outside the semantic scope of its underlying query language. We present Photon, a robust, modular, cross-domain NLIDB that can flag natural language input to which a SQL mapping cannot be immediately determined. Photon consists of a strong neural semantic parser (63.2\% structure accuracy on the Spider dev benchmark), a human-in-the-loop question corrector, a SQL executor and a response generator. The question corrector is a discriminative neural sequence editor which detects confusion span(s) in the input question and suggests rephrasing until a translatable input is given by the user or a maximum number of iterations are conducted. Experiments on simulated data show that the proposed method effectively improves the robustness of text-to-SQL system against untranslatable user input. The live demo of our system is available at http://naturalsql.com.