论文标题

Tutte多项式,完整不变和Theta系列

Tutte polynomial, complete invariant, and theta series

论文作者

Kume, Misaki, Miezaki, Tsuyoshi, Sakuma, Tadashi, Shinohara, Hidehiro

论文摘要

在这项研究中,我们提出了两个与Tutte多项式相关的结果。首先,我们为图形提供新的多项式不变式。我们注意到,多项式的变量数量是一个。其次,让L_1和L_2为两个非晶格晶格。我们声明,如果这些theta系列相同,则L_1和L_2是theta系列。在〜康威教授的书《感性(二次)形式》中讨论了识别theta系列等效格的问题,标题是“你能听到晶格的形状吗?”在这项研究中,我们提出了一种使用矩形及其Tutte多项式的theta系列等效晶格的方法。

In this study, we present two results that relate Tutte polynomials. First, we provide new and complete polynomial invariants for graphs. We note that the number of variables of our polynomials is one. Second, let L_1 and L_2 be two non-isomorphic lattices. We state that L_1 and L_2 are theta series equivalent if those theta series are the same. The problem of identifying theta series equivalent lattices is discussed in Prof.~Conway's book The Sensual (Quadratic) Form with the title "Can You Hear the Shape of a Lattice?" In this study, we present a method to find theta series equivalent lattices using matroids and their Tutte polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源