论文标题

使用日志数据的机器学习网络防御的对抗性鲁棒性

Adversarial Robustness for Machine Learning Cyber Defenses Using Log Data

论文作者

Steverson, Kai, Mullin, Jonathan, Ahiskali, Metin

论文摘要

将机器学习应用于网络防御的兴趣越来越大。一种有前途的方法是应用自然语言处理技术来分析可疑行为的日志数据。这些系统在对抗性攻击方面的鲁棒性有多大的自然问题。防御复杂攻击特别关注网络防御。在本文中,我们开发了一个测试框架,以评估机器学习网络防御的对抗性鲁棒性,尤其是专注于日志数据的防御能力。我们的框架使用深度加强学习和对抗性自然语言处理的技术。我们使用公开可用的数据集验证框架,并证明我们的对抗性攻击确实针对目标系统取得了成功,从而揭示了潜在的脆弱性。我们应用框架来分析不同级别的辍学级别的影响,并发现较高的辍学水平会增加稳健性。此外,有90%的辍学概率表现出最高水平的鲁棒性,这表明可能需要非常高的辍学才能适当地防止对​​抗性攻击。

There has been considerable and growing interest in applying machine learning for cyber defenses. One promising approach has been to apply natural language processing techniques to analyze logs data for suspicious behavior. A natural question arises to how robust these systems are to adversarial attacks. Defense against sophisticated attack is of particular concern for cyber defenses. In this paper, we develop a testing framework to evaluate adversarial robustness of machine learning cyber defenses, particularly those focused on log data. Our framework uses techniques from deep reinforcement learning and adversarial natural language processing. We validate our framework using a publicly available dataset and demonstrate that our adversarial attack does succeed against the target systems, revealing a potential vulnerability. We apply our framework to analyze the influence of different levels of dropout regularization and find that higher dropout levels increases robustness. Moreover 90% dropout probability exhibited the highest level of robustness by a significant margin, which suggests unusually high dropout may be necessary to properly protect against adversarial attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源