论文标题

大气中的客观频繁不确定性量化$ _2 $检索

Objective frequentist uncertainty quantification for atmospheric CO$_2$ retrievals

论文作者

Patil, Pratik, Kuusela, Mikael, Hobbs, Jonathan

论文摘要

大气二氧化碳(CO $ _2 $)稳定增加正在影响全球气候系统,并威胁地球生态系统的长期可持续性。为了更好地了解Co $ _2 $的来源和水槽,NASA运营着轨道碳天文台-2和3卫星,以监视太空中的Co $ _2 $。这些卫星在不同的光谱带中反射出地球表面的阳光的被动辐射测量值,然后在不良的反问题中反转,以获得大气中的浓度的估计。在这项工作中,我们提出了一种新的CO $ _2 $检索方法,该方法在状态变量上使用已知的物理约束,并直接反转感兴趣的目标功能,以基于凸面编程构建良好的频繁置信区间。我们将方法与当前的操作检索过程进行了比较,该过程使用概率分布形式的先验知识来正常问题。我们证明,所提出的间隔始终达到所需的频繁覆盖范围,而在现实的模拟实验中,在各个位置和空间区域的频繁含义上,操作不确定性在频繁的意义上都易于校准。我们还研究了特定的滋扰状态变量对拟议间隔的长度的影响,并确定某些关键变量,这些变量可以大大降低最终的不确定性,并在额外的确定性或概率约束下,并开发一个原理框架以将这些信息纳入我们的方法中。

The steadily increasing amount of atmospheric carbon dioxide (CO$_2$) is affecting the global climate system and threatening the long-term sustainability of Earth's ecosystem. In order to better understand the sources and sinks of CO$_2$, NASA operates the Orbiting Carbon Observatory-2 & 3 satellites to monitor CO$_2$ from space. These satellites make passive radiance measurements of the sunlight reflected off the Earth's surface in different spectral bands, which are then inverted in an ill-posed inverse problem to obtain estimates of the atmospheric CO$_2$ concentration. In this work, we propose a new CO$_2$ retrieval method that uses known physical constraints on the state variables and direct inversion of the target functional of interest to construct well-calibrated frequentist confidence intervals based on convex programming. We compare the method with the current operational retrieval procedure, which uses prior knowledge in the form of probability distributions to regularize the problem. We demonstrate that the proposed intervals consistently achieve the desired frequentist coverage, while the operational uncertainties are poorly calibrated in a frequentist sense both at individual locations and over a spatial region in a realistic simulation experiment. We also study the influence of specific nuisance state variables on the length of the proposed intervals and identify certain key variables that can greatly reduce the final uncertainty given additional deterministic or probabilistic constraints, and develop a principled framework to incorporate such information into our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源