论文标题
罗宾斯和阿尔迪拉遇到了伯斯特
Robbins and Ardila meet Berstel
论文作者
论文摘要
1996年,内维尔·罗宾斯(Neville Robbins)证明了一个了不起的事实,即fibonacci finite Infinite产品$ x^n $的系数$$ \ prod_ {n \ geq 2}(1-x^{f_n})=(1-x)(1-x^2)(1-x^2)(1-x^3)(1-x^3)(1-x^3)(1-x^5)(1-x^5)(1- x^8) +cd^8) \ cdots $$始终是$ -1 $,$ 0 $或$ 1 $。 Federico Ardila使用不同的方法证明了相同的结果。 同时,在2001年,让·伯斯特尔(Jean Berstel)提供了一个简单的四州传感器,将“非法”斐波那契代表转换为“法律”。我们展示了如何使用现有软件可以执行的纯粹计算技术来获取Berstel的Robbins-Ardila几乎没有工作。
In 1996, Neville Robbins proved the amazing fact that the coefficient of $X^n$ in the Fibonacci infinite product $$ \prod_{n \geq 2} (1-X^{F_n}) = (1-X)(1-X^2)(1-X^3)(1-X^5)(1-X^8) \cdots = 1-X-X^2+X^4 + \cdots$$ is always either $-1$, $0$, or $1$. The same result was proved later by Federico Ardila using a different method. Meanwhile, in 2001, Jean Berstel gave a simple 4-state transducer that converts an "illegal" Fibonacci representation into a "legal" one. We show how to obtain the Robbins-Ardila result from Berstel's with almost no work at all, using purely computational techniques that can be performed by existing software.