论文标题

二次分配问题的元武器算法的性能分析

Performance Analysis of Meta-heuristic Algorithms for a Quadratic Assignment Problem

论文作者

Raziei, Zohreh, Tavakkoli-Moghaddam, Reza, Tabrizian, Siavash

论文摘要

二次分配问题(QAP)是属于NP-HARD类别的组合优化问题。因此,即使对于小实例,也很难在多项式时间内解决。因此,对QAP的研究重点是获得克服该问题的方法。启发式方法和元映射算法是该问题的普遍解决方案方法。本文是应用不同的元疗算法来解决QAP的比较研究之一。分类元武器算法的最流行方法之一是基于搜索策略,包括(1)本地搜索改进元元数据以及(2)基于全球搜索的元元素术。将本文与另一个论文区分开来的问题是本地和全球搜索(EA和SI)的比较性能,其中包括遗传算法(GA),粒子群优化(PSO),Hybrid GA-PSO,灰狼优化(GWO),Harmony Search AlgorithM(Harmony search AlgorithM(has)和Simpulated Neannering(SA)(SA)。另外,一种改进的启发式算法(即2-OPT)用于与他人进行比较。改进了PSO,GWO和2-OPT算法,以更好地比较其他算法进行评估。为了分析这些算法的比较优势,提出了八种不同的因素。通过考虑所有这些因素,该测试将在来自不同尺寸的QAP库(QAPLIB)的六个测试问题中实施。本文的另一个贡献是以新的方式测量每种算法的强烈收敛条件。

A quadratic assignment problem (QAP) is a combinatorial optimization problem that belongs to the class of NP-hard ones. So, it is difficult to solve in the polynomial time even for small instances. Research on the QAP has thus focused on obtaining a method to overcome this problem. Heuristics and meta-heuristics algorithm are prevalent solution methods for this problem. This paper is one of comparative studies to apply different metaheuristic algorithms for solving the QAP. One of the most popular approaches for categorizing meta-heuristic algorithms is based on a search strategy, including (1) local search improvement meta-heuristics and (2) global search-based meta-heuristics. The matter that distinguishes this paper from the other is the comparative performance of local and global search (both EA and SI), in which meta-heuristics that consist of genetic algorithm (GA), particle swarm optimization (PSO), hybrid GA-PSO, grey wolf optimization (GWO), harmony search algorithm (HAS) and simulated annealing (SA). Also, one improvement heuristic algorithm (ie, 2-Opt) is used to compare with others. The PSO, GWO and 2-Opt algorithms are improved to achieve the better comparison toward the other algorithms for evaluation. In order to analysis the comparative advantage of these algorithms, eight different factors are presented. By taking into account all these factors, the test is implemented in six test problems of the QAP Library (QAPLIB) from different sizes. Another contribution of this paper is to measure a strong convergence condition for each algorithm in a new way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源