论文标题
研究量子厅条件下并行配置的量子点接触的当前分布
Investigating the current distribution of parallel-configured quantum point contacts under quantum Hall conditions
论文作者
论文摘要
电场控制的电荷运输是现代计算机的关键概念,体现在现场效应晶体管中。金属栅极电压控制电荷人群,因此可以定义逻辑元素,这是计算过程的关键。在这里,我们研究了一个类似的系统,该系统由金属门定义,该系统在存在强垂直磁场的情况下在高弹性电子系统上诱导准二维传输通道。首先,我们解决了三维泊松方程,自愿施加相关的边界条件,并将输出作为初始条件,在存在外部磁场的情况下,在二维电子系统的平面中计算电荷密度和电势分布。随后,我们强加了外部电流并获得了运输电荷的空间分布,考虑到足够低(<10 kelvin)温度的各种磁场和栅极电压强度。我们表明,磁场打破了电流分布的空间对称性,而在金属门上施加电压决定了散射过程。
Electric-field-controlled charge transport is a key concept of modern computers, embodied namely in field effect transistors. The metallic gate voltage controls charge population, thus it is possible to define logical elements which are the key to computational processes. Here, we investigate a similar system defined by metallic gates inducing quasi-one-dimensional transport channels on a high-mobility electron system in the presence of a strong perpendicular magnetic field. Firstly, we solve the three-dimensional Poisson equation, self-consistently imposing relevant boundary conditions, and use the output as an initial condition to calculate charge density and potential distribution in the plane of a two-dimensional electron system, in the presence of an external magnetic field. Subsequently, we impose an external current and obtain the spatial distribution of the transport charges, considering various magnetic field and gate voltage strengths at sufficiently low (< 10 Kelvin) temperatures. We show that magnetic field breaks the spatial symmetry of the current distribution, whereas voltage applied to metallic gates determines the scattering processes.