论文标题
多元地统计学的渐近预测
Asymptotically Equivalent Prediction in Multivariate Geostatistics
论文作者
论文摘要
Cokriging是多元地统计学中的空间插值(最佳线性无偏预测)的常见方法。尽管最佳线性预测在单变量的空间统计数据中已经得到了充分的理解,但到目前为止,多元案例的文献是难以捉摸的。现代空间数据集提供的新挑战通常是多元群体,要求对Cokriging进行更深入的研究。特别是,我们处理了固定域渐近学框架内的误指定的cokrig cokrig cokrig的问题。具体而言,我们提供了与多元高斯随机场相关的度量等效性的条件,并将索引设置为紧凑的D维欧几里得空间。在大约50年的空间统计中,这种情况一直难以捉摸。 然后,我们专注于矩阵有价值的协方差函数的多元Matérn和广义的Wendland类别,这些函数非常受欢迎,因为它们具有对空间插值至关重要的参数,并且控制着相关高斯过程的均值不同。我们提供了足够的条件,以等效于高斯措施,并依赖于这两个类别的协方差参数。这使得能够确定多元地统计学中渐近等效插值至关重要的参数。然后通过模拟研究来说明我们的发现。
Cokriging is the common method of spatial interpolation (best linear unbiased prediction) in multivariate geostatistics. While best linear prediction has been well understood in univariate spatial statistics, the literature for the multivariate case has been elusive so far. The new challenges provided by modern spatial datasets, being typically multivariate, call for a deeper study of cokriging. In particular, we deal with the problem of misspecified cokriging prediction within the framework of fixed domain asymptotics. Specifically, we provide conditions for equivalence of measures associated with multivariate Gaussian random fields, with index set in a compact set of a d-dimensional Euclidean space. Such conditions have been elusive for over about 50 years of spatial statistics. We then focus on the multivariate Matérn and Generalized Wendland classes of matrix valued covariance functions, that have been very popular for having parameters that are crucial to spatial interpolation, and that control the mean square differentiability of the associated Gaussian process. We provide sufficient conditions, for equivalence of Gaussian measures, relying on the covariance parameters of these two classes. This enables to identify the parameters that are crucial to asymptotically equivalent interpolation in multivariate geostatistics. Our findings are then illustrated through simulation studies.