论文标题
深层多尺度相似网络,用于计算机断层扫描图像上肾上腺质量的子类别分化
Deep Multi-Scale Resemblance Network for the Sub-class Differentiation of Adrenal Masses on Computed Tomography Images
论文作者
论文摘要
通过计算机断层扫描(CT)检测到的肾上腺(肾上腺肿块)中肿块病变的准确分类对于诊断和患者管理很重要。肾上腺肿块可以是良性或恶性肿瘤,良性肿块的患病率有所不同。基于卷积神经网络(CNN)的分类方法是最大程度地提高大型医学成像训练数据集中阶层差异的最新方法。由于质量病变的大小,CNN在肾上腺内的应用,在肾上腺肿块中的挑战是具有挑战性的。我们开发了一个深度多尺度相似的网络(DMRN),以克服这些局限性并杠杆配对的CNN来评估阶层内相似性。我们使用多尺度功能嵌入,通过迭代地结合在输入的不同尺度上产生的互补信息以创建结构化特征描述符,以提高类间的分离性。我们用随机采样的配对肾上腺肿块增强了训练数据,以减少训练数据不平衡的影响。我们使用了229张CT扫描肾上腺肿块的患者进行评估。在五倍的交叉验证中,与最先进的方法相比,我们的方法的结果最好(准确性89.52%)(p <0.05)。我们对ImageClef 2016竞赛数据集进行了用于医疗子图分类的方法进行了概括分析,该数据集由6,776张图像组成的培训集和30个类别的4,166张图像的测试集组成。与现有方法相比,我们的方法具有更好的分类性能(准确性为85.90%),并且与需要额外的培训数据(准确性降低1.47%)相比,竞争性具有竞争力。我们的DMRN亚肾上腺肿块在CT上,优于最先进的方法。
The accurate classification of mass lesions in the adrenal glands (adrenal masses), detected with computed tomography (CT), is important for diagnosis and patient management. Adrenal masses can be benign or malignant and benign masses have varying prevalence. Classification methods based on convolutional neural networks (CNNs) are the state-of-the-art in maximizing inter-class differences in large medical imaging training datasets. The application of CNNs, to adrenal masses is challenging due to large intra-class variations, large inter-class similarities and imbalanced training data due to the size of the mass lesions. We developed a deep multi-scale resemblance network (DMRN) to overcome these limitations and leveraged paired CNNs to evaluate the intra-class similarities. We used multi-scale feature embedding to improve the inter-class separability by iteratively combining complementary information produced at different scales of the input to create structured feature descriptors. We augmented the training data with randomly sampled paired adrenal masses to reduce the influence of imbalanced training data. We used 229 CT scans of patients with adrenal masses for evaluation. In a five-fold cross-validation, our method had the best results (89.52% in accuracy) when compared to the state-of-the-art methods (p<0.05). We conducted a generalizability analysis of our method on the ImageCLEF 2016 competition dataset for medical subfigure classification, which consists of a training set of 6,776 images and a test set of 4,166 images across 30 classes. Our method achieved better classification performance (85.90% in accuracy) when compared to the existing methods and was competitive when compared with methods that require additional training data (1.47% lower in accuracy). Our DMRN sub-classified adrenal masses on CT and was superior to state-of-the-art approaches.