论文标题
使用低分辨率ADC进行参数估计的贝叶斯大规模MIMO通道估计
Bayesian Massive MIMO Channel Estimation with Parameter Estimation Using Low-Resolution ADCs
论文作者
论文摘要
为了减少硬件复杂性和功耗,大量多输入多输出(MIMO)系统采用低分辨率类似于数字转换器(ADC)来获取量化的测量$ \ boldsymbol y $。这给通道估计问题带来了新的挑战,并且在角度域中,通道系数向量$ \ boldsymbol x $上的稀疏先验通常用于补偿量化过程中丢失的信息。通过从概率的角度来解释稀疏的先验,我们可以假设$ \ boldsymbol x $遵循某些稀疏的先前分发,并使用近似消息传递(AMP)恢复它。但是,在实践中,分布参数是未知的,需要估算。由于量化噪声模型的计算复杂性增加,先前的作品要么使用近似噪声模型或手动调整噪声分布参数。在本文中,我们将信号和参数视为随机变量,并在AMP框架内共同恢复它们。提出的方法导致了一种更简单的参数估计方法,使我们能够直接与量化噪声模型一起使用。实验结果表明,所提出的方法在各种噪声水平下实现了最先进的性能,并且不需要参数调整,这使其成为通道估计的实用且无维护的方法。
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $\boldsymbol y$. This poses new challenges to the channel estimation problem, and the sparse prior on the channel coefficient vector $\boldsymbol x$ in the angle domain is often used to compensate for the information lost during quantization. By interpreting the sparse prior from a probabilistic perspective, we can assume $\boldsymbol x$ follows certain sparse prior distribution and recover it using approximate message passing (AMP). However, the distribution parameters are unknown in practice and need to be estimated. Due to the increased computational complexity in the quantization noise model, previous works either use an approximated noise model or manually tune the noise distribution parameters. In this paper, we treat both signals and parameters as random variables and recover them jointly within the AMP framework. The proposed approach leads to a much simpler parameter estimation method, allowing us to work with the quantization noise model directly. Experimental results show that the proposed approach achieves state-of-the-art performance under various noise levels and does not require parameter tuning, making it a practical and maintenance-free approach for channel estimation.