论文标题

基于分布晶格的融合和含义的模块:表示和二元性

Modules with fusion and implication based over distributive lattices: Representation and Duality

论文作者

Calomino, Ismael, Botero, William J. Zuluaga

论文摘要

在本文中,我们简要介绍了基于分配晶格或FIDL模块的融合和含义的模块类别。我们介绍了Fidl-Subalgebra和Fidl-Congruence的概念,以及简单且单向不可减少的FIDL模型的概念。我们为FIDL模型提供了双层的Priestley二重性,此外,作为这种二元性的应用,我们提供了对Fidl-Congruence的拓扑间隔的描述。该结果将使我们能够表征简单且细微的不可还原的FIDL模型。

In this paper we study the class of modules with fusion and implication based over distributive lattices, or FIDL-modules, for short. We introduce the concepts of FIDL-subalgebra and FIDL-congruence as well as the notions of simple and subdirectly irreducible FIDL-modules. We give a bi-sorted Priestley-like duality for FIDL-modules and moreover, as an application of such a duality, we provide a topological bi-spaced description of the FIDL-congruences. This result will allows us to characterize the simple and subdirectly irreducible FIDL-modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源