论文标题

实验室演示在反射光中成像外行星的空间线性暗场控制

Laboratory Demonstration of Spatial Linear Dark Field Control For Imaging Extrasolar Planets in Reflected Light

论文作者

Currie, Thayne, Pluzhnik, Eugene, Guyon, Olivier, Belikov, Ruslan, Miller, Kelsey, Bos, Steven, Males, Jared, Sirbu, Dan, Bond, Charlotte, Frazin, Richard, Groff, Tyler, Kern, Brian, Lozi, Julien, Mazin, Benjamin, Nemati, Bijan, Norris, Barnaby, Subedi, Hari, Will, Scott

论文摘要

反射光的成像行星是未来的NASA任务和ELT的重点,需要先进的波前控制,以维持恒星光环的深度,时间相关的零 - 即一个衍射光束宽度。使用AMES CORONAGRAPH实验测试,我们提出了接近原始对比的空间线性暗场控制(LDFC)的第一个实验室测试($ \ sim $ \ sim $ 5 $ \ times $ 10 $ \ times $ 10 $^{ - 7} $),分离(1.5---5.2 $λ$/d)与Sund-corland of Sungiagr Planets a Imparaty corron corrons of Space-corrand of Space-corrand of Space-corrand of Space-corranp ww fffirapl ww w。低质量恒星周围具有未来的30m级望远镜的射季。在四个独立的实验和一系列不同的扰动中,LDFC在很大程度上恢复了(在1.2--1.7的一倍之内),并保持了一个暗孔,其对比度被相误差通过数量级降解。我们对经典斑点无效的实施需要2--5个迭代倍数和20-50 dm命令,以达到空间LDFC获得的对比度。我们的结果为保持黑洞的前进提供了一个有希望的途径,而无需依赖DM探测和低流量策略,这可能会改善高对比度成像工具的占空比,增加斑点的时间相关性,从而增强我们在未来二十年中图像真实太阳能系统类似物的能力。

Imaging planets in reflected light, a key focus of future NASA missions and ELTs, requires advanced wavefront control to maintain a deep, temporally correlated null of stellar halo -- i.e. a dark hole -- at just several diffraction beam widths. Using the Ames Coronagraph Experiment testbed, we present the first laboratory tests of Spatial Linear Dark Field Control (LDFC) approaching raw contrasts ($\sim$ 5$\times$10$^{-7}$) and separations (1.5--5.2 $λ$/D) needed to image jovian planets around Sun-like stars with space-borne coronagraphs like WFIRST-CGI and image exo-Earths around low-mass stars with future ground-based 30m class telescopes. In four separate experiments and for a range of different perturbations, LDFC largely restores (to within a factor of 1.2--1.7) and maintains a dark hole whose contrast is degraded by phase errors by an order of magnitude. Our implementation of classical speckle nulling requires a factor of 2--5 more iterations and 20--50 DM commands to reach contrasts obtained by spatial LDFC. Our results provide a promising path forward to maintaining dark holes without relying on DM probing and in the low-flux regime, which may improve the duty cycle of high-contrast imaging instruments, increase the temporal correlation of speckles, and thus enhance our ability to image true solar system analogues in the next two decades.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源