论文标题

ABCDISCO:使用机器学习自动化ABCD方法

ABCDisCo: Automating the ABCD Method with Machine Learning

论文作者

Kasieczka, Gregor, Nachman, Benjamin, Schwartz, Matthew D., Shih, David

论文摘要

ABCD方法是高能物理学中使用最广泛的数据驱动背景估计技术之一。在两个统计独立的分类器上切割,将信号和背景分为四个区域,因此可以简单地使用其他三个控制区域估算信号区域中的背景。通常,独立的分类器“手动”选择是直观的,并且是出于身体动机的变量。在这里,我们探讨了使用机器学习自动化一个或两个分类器的设计的可能性。我们展示了如何使用最新的去相关方法来构建强大而独立的歧视者。在此过程中,我们发现了ABCD方法的先前未见的方面:其精度取决于控制区域中的信号污染低,不仅是整体,而且相对于信号区域的信号分数。我们用三个示例演示了该方法:一个由三维高斯人组成的简单模型;增强了Hadronic顶级喷气式标签;并重铸了配对的Dijet共振。在所有情况下,使用机器学习自动化的ABCD方法都会显着改善ABCD封闭,背景排斥和信号污染的性能。

The ABCD method is one of the most widely used data-driven background estimation techniques in high energy physics. Cuts on two statistically-independent classifiers separate signal and background into four regions, so that background in the signal region can be estimated simply using the other three control regions. Typically, the independent classifiers are chosen "by hand" to be intuitive and physically motivated variables. Here, we explore the possibility of automating the design of one or both of these classifiers using machine learning. We show how to use state-of-the-art decorrelation methods to construct powerful yet independent discriminators. Along the way, we uncover a previously unappreciated aspect of the ABCD method: its accuracy hinges on having low signal contamination in control regions not just overall, but relative to the signal fraction in the signal region. We demonstrate the method with three examples: a simple model consisting of three-dimensional Gaussians; boosted hadronic top jet tagging; and a recasted search for paired dijet resonances. In all cases, automating the ABCD method with machine learning significantly improves performance in terms of ABCD closure, background rejection and signal contamination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源