论文标题
噪声引起的贫瘠的高原在变化量子算法中
Noise-Induced Barren Plateaus in Variational Quantum Algorithms
论文作者
论文摘要
变异量子算法(VQA)可能是噪音中间尺度量子(NISQ)计算机上量子优势的途径。一个自然的问题是,NISQ设备上的噪声是否对VQA性能有根本的限制。我们严格地证明了嘈杂的VQA是一个严重的局限性,因为噪声会导致训练景观具有贫瘠的高原(即消失的梯度)。具体来说,对于当地的保利噪声,我们证明,如果安萨兹的深度随$ n $线性增长,则梯度在Qubits $ n $中成倍消失。这些噪声引起的贫瘠高原(Nibps)在概念上与无噪声贫瘠的高原不同,这与随机参数初始化有关。我们的结果是针对一个通用Ansatz制定的,该通用ANSATZ包括特殊情况,即量子交替的操作员Ansatz和单一耦合群集Ansatz等。对于前者而言,我们的数值启发式方法证明了NIBP现象为现实的硬件噪声模型。
Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise on NISQ devices places fundamental limitations on VQA performance. We rigorously prove a serious limitation for noisy VQAs, in that the noise causes the training landscape to have a barren plateau (i.e., vanishing gradient). Specifically, for the local Pauli noise considered, we prove that the gradient vanishes exponentially in the number of qubits $n$ if the depth of the ansatz grows linearly with $n$. These noise-induced barren plateaus (NIBPs) are conceptually different from noise-free barren plateaus, which are linked to random parameter initialization. Our result is formulated for a generic ansatz that includes as special cases the Quantum Alternating Operator Ansatz and the Unitary Coupled Cluster Ansatz, among others. For the former, our numerical heuristics demonstrate the NIBP phenomenon for a realistic hardware noise model.