论文标题

评估认知决策支持系统中偏见的风险

Assessing Risks of Biases in Cognitive Decision Support Systems

论文作者

Lai, Kenneth, Oliveira, Helder C. R., Hou, Ming, Yanushkevich, Svetlana N., Shmerko, Vlad

论文摘要

识别,评估,反驳和减轻与异质来源不同性质的偏见是设计认知决策支持系统(DSS)的关键问题。这种系统的一个示例是认知生物特征识别的安全检查点。有偏见的算法以不可预测的方式影响决策过程,例如不同人口组的面部识别可能会严重影响检查站的风险评估。本文讨论了一个充满挑战的研究问题,即如何管理偏见集合?我们从偏见方面提供了DSS操作局势的性能预测。概率推理技术用于评估这种偏见的风险。我们还使用检查点系统的面部生物识别组件提供了一个动机实验,该实验突出了发现偏见的集合和评估其风险的技术。

Recognizing, assessing, countering, and mitigating the biases of different nature from heterogeneous sources is a critical problem in designing a cognitive Decision Support System (DSS). An example of such a system is a cognitive biometric-enabled security checkpoint. Biased algorithms affect the decision-making process in an unpredictable way, e.g. face recognition for different demographic groups may severely impact the risk assessment at a checkpoint. This paper addresses a challenging research question on how to manage an ensemble of biases? We provide performance projections of the DSS operational landscape in terms of biases. A probabilistic reasoning technique is used for assessment of the risk of such biases. We also provide a motivational experiment using face biometric component of the checkpoint system which highlights the discovery of an ensemble of biases and the techniques to assess their risks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源