论文标题

SE(3)-TrackNet:通过校准合成域中的图像残差来跟踪数据驱动的6D姿势跟踪

se(3)-TrackNet: Data-driven 6D Pose Tracking by Calibrating Image Residuals in Synthetic Domains

论文作者

Wen, Bowen, Mitash, Chaitanya, Ren, Baozhang, Bekris, Kostas E.

论文摘要

在视频序列中跟踪对象的6D姿势对于机器人操纵很重要。但是,这项任务引入了多个挑战:(i)机器人操纵涉及严重的阻塞; (ii)数据和注释很麻烦,很难收集6D姿势,这使机器学习解决方案复杂化,并且(iii)逐步误差漂移通常会在长期跟踪中积累,以便需要重新定义对象的姿势。这项工作为长期6D姿势跟踪提出了一种数据驱动的优化方法。它旨在确定鉴于当前的RGB-D观察结果和以先前最佳估计和对象模型为条件的合成图像的最佳相对姿势。在这种情况下的关键贡献是一种新颖的神经网络体系结构,它适当地删除了特征编码以帮助减少域移动的特征,并通过Lie代数进行有效的3D方向表示。因此,即使仅使用合成数据对网络进行训练,也可以通过真实图像有效地工作。对基准测试的全面实验 - 现有的实验以及与对象操纵相关的重大遮挡的新数据集 - 表明,即使已经接受了真实图像的培训,提出的方法也始终如一地实现了始终如一的可靠估计和优于替代方案。该方法也是替代方案中计算上最有效的方法,并达到了90.9Hz的跟踪频率。

Tracking the 6D pose of objects in video sequences is important for robot manipulation. This task, however, introduces multiple challenges: (i) robot manipulation involves significant occlusions; (ii) data and annotations are troublesome and difficult to collect for 6D poses, which complicates machine learning solutions, and (iii) incremental error drift often accumulates in long term tracking to necessitate re-initialization of the object's pose. This work proposes a data-driven optimization approach for long-term, 6D pose tracking. It aims to identify the optimal relative pose given the current RGB-D observation and a synthetic image conditioned on the previous best estimate and the object's model. The key contribution in this context is a novel neural network architecture, which appropriately disentangles the feature encoding to help reduce domain shift, and an effective 3D orientation representation via Lie Algebra. Consequently, even when the network is trained only with synthetic data can work effectively over real images. Comprehensive experiments over benchmarks - existing ones as well as a new dataset with significant occlusions related to object manipulation - show that the proposed approach achieves consistently robust estimates and outperforms alternatives, even though they have been trained with real images. The approach is also the most computationally efficient among the alternatives and achieves a tracking frequency of 90.9Hz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源