论文标题

Bökstedt周期性的切片完善

A slice refinement of Bökstedt periodicity

论文作者

Sulyma, Yuri J. F.

论文摘要

令$ r $为一个完美的环。 Hesselholt和Bhatt-Morrow-Scholze已确定了$ \ Mathrm {thh}(r; \ Mathbb z_p)$的nikov过滤:它均匀地集中在BökstedtGenerator $σ$上产生的bökstedtGenerator $σ$,clentalicalbökstedtecerticalof $ r = f = pp f = f = f = f = cl = f = f = f = f = f = f = f = f = f = f = c。我们在$ \ mathrm {thh}(r; \ mathbb z_p)$上研究了后尼科夫过滤, *常规切片过滤 *的均等概括。切片过滤再次集中在均匀度上,由$ RO(\ Mathbb t)$ - 分级类生成,可以松散地将其视为$σ$的 * norms *。这些切片可表示为$ ro(\ mathbb t)$ - 从Witt Mackey Foundor获得的Mackey Foundor的分级悬架。我们通过$ q $ factorials获得了一种过滤。一种可能具有独立关注的关键成分是切片过滤的山丘表征与Anschütz-le Bras'$ q $ - 赋予Legendre公式的信息之间的密切联系。

Let $R$ be a perfectoid ring. Hesselholt and Bhatt-Morrow-Scholze have identified the Postnikov filtration on $\mathrm{THH}(R;\mathbb Z_p)$: it is concentrated in even degrees, generated by powers of the Bökstedt generator $σ$, generalizing classical Bökstedt periodicity for $R=\mathbb F_p$. We study an equivariant generalization of the Postnikov filtration, the *regular slice filtration*, on $\mathrm{THH}(R;\mathbb Z_p)$. The slice filtration is again concentrated in even degrees, generated by $RO(\mathbb T)$-graded classes which can loosely be thought of as the *norms* of $σ$. The slices are expressible as $RO(\mathbb T)$-graded suspensions of Mackey functors obtained from the Witt Mackey functor. We obtain a sort of filtration by $q$-factorials. A key ingredient, which may be of independent interest, is a close connection between the Hill-Yarnall characterization of the slice filtration and Anschütz-le Bras' $q$-deformation of Legendre's formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源