论文标题

通过整体系统级表示和监视支持安全决策 - 自动化车辆自我代表概念的摘要和分类学

Supporting Safe Decision Making Through Holistic System-Level Representations & Monitoring -- A Summary and Taxonomy of Self-Representation Concepts for Automated Vehicles

论文作者

Nolte, Marcus, Jatzkowski, Inga, Ernst, Susanne, Maurer, Markus

论文摘要

自动化车辆的市场引入促使对自动化车辆系统安全的强烈研究工作。与驱动程序辅助系统不同,SAE 3级以上的系统不仅负责执行动态驾驶任务(DDT),而且还始终监视自动化系统的性能。完成这些监视任务的关键组件是系统监视器,可以在运行时评估系统的性能,例如在发生部分系统故障的情况下激活后备模块。为了为自动化车辆实施合理的监视策略,需要采用整体系统级别的方法,以利用复杂的内部系统模型。在本文中,我们介绍了定义和分类法,并将此类模型包含在车辆的自我代理中,并强调了术语在场景和情况表示中的作用。整体系统级别的监视不仅提供了使用监视器激活后备的可能性。在本文中,我们认为,为什么整体系统级别的监视是朝着更高自动化级别迈出的至关重要的一步,并举例说明了它如何通过为决策提供输入来使系统能够在战术水平上对性能丧失做出反应。

The market introduction of automated vehicles has motivated intense research efforts into the safety of automated vehicle systems. Unlike driver assistance systems, SAE Level 3+ systems are not only responsible for executing (parts of) the dynamic driving task (DDT), but also for monitoring the automation system's performance at all times. Key components to fulfill these surveillance tasks are system monitors which can assess the system's performance at runtime, e.g. to activate fallback modules in case of partial system failures. In order to implement reasonable monitoring strategies for an automated vehicle, holistic system-level approaches are required, which make use of sophisticated internal system models. In this paper we present definitions and an according taxonomy, subsuming such models as a vehicle's self-representation and highlight the terms' roles in a scene and situation representation. Holistic system-level monitoring does not only provide the possibility to use monitors for the activation of fallbacks. In this paper we argue, why holistic system-level monitoring is a crucial step towards higher levels of automation, and give an example how it also enables the system to react to performance loss at a tactical level by providing input for decision making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源