论文标题

船只运动轨迹预测的无监督方法

The Unsupervised Method of Vessel Movement Trajectory Prediction

论文作者

Chen, Chih-Wei, Harrison, Charles, Huang, Hsin-Hsiung

论文摘要

在实际应用程序方案中,对于海洋导航员和安全分析师来说,基于自动化标识系统(AIS)数据在给定的时间范围内预测海上的血管运动轨迹至关重要。本文提出了一种无监督的船舶运动轨迹预测方法,该方法代表了三维空间中的数据,该数据包括点之间的时间差,测试及其预测的前进和向后位置之间的缩放误差距离以及时空角度。表示空间将下一个点的搜索范围降低到适合本地路径预测的候选者的集合,从而提高了准确性。与大多数统计学习或深度学习方法不同,提出的基于聚类的轨迹重建方法不需要计算昂贵的模型培训。这使得无需使用培训集就可以实时可靠,准确的预测。我们的结果表明,最预测的轨迹精确由真实的血管路径组成。

In real-world application scenarios, it is crucial for marine navigators and security analysts to predict vessel movement trajectories at sea based on the Automated Identification System (AIS) data in a given time span. This article presents an unsupervised method of ship movement trajectory prediction which represents the data in a three-dimensional space which consists of time difference between points, the scaled error distance between the tested and its predicted forward and backward locations, and the space-time angle. The representation feature space reduces the search scope for the next point to a collection of candidates which fit the local path prediction well, and therefore improve the accuracy. Unlike most statistical learning or deep learning methods, the proposed clustering-based trajectory reconstruction method does not require computationally expensive model training. This makes real-time reliable and accurate prediction feasible without using a training set. Our results show that the most prediction trajectories accurately consist of the true vessel paths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源