论文标题
介电纳米粒子阵列中的拓扑状态
Topological states in disordered arrays of dielectric nanoparticles
论文作者
论文摘要
我们研究了谐振介电纳米颗粒的拓扑锯齿形阵列中局部光的局部边缘状态的混乱与拓扑之间的相互作用。我们以绕线数的绕组数来表征拓扑特性,这些绕组数既取决于锯齿形角度和阵列中纳米颗粒之间的间距。对于平等阵列,该系统可能具有两个绕组数$ν= 0 $或$ 1 $的值,即使在存在混乱的情况下,它也可以在边缘进行定位,这与有限长度纳米风险的实验观察一致。对于交错间距阵列,该系统具有以绕组数量$ν= 0 $,$ 1 $或2 $为特征的更丰富的拓扑阶段,取决于平均的锯齿形角度和混乱的强度。与平等间距的锯齿形阵列形成鲜明对比,交错间距阵列显示了由角度障碍引起的两种类型的拓扑相变,(i)$ν= 0 \leftrightArrowν= 1 $和(ii)$ n = 1 \ leftrightArrow n = 1 \leftrightArrowν= 2 $。更重要的是,即使在强烈的疾病的情况下,交错间距阵列的频谱也可能仍然存在。
We study the interplay between disorder and topology for the localized edge states of light in topological zigzag arrays of resonant dielectric nanoparticles. We characterize topological properties by the winding number that depends on both zigzag angle and spacing between nanoparticles in the array. For equal-spacing arrays, the system may have two values of the winding number $ν=0$ or $1$, and it demonstrates localization at the edges even in the presence of disorder, being consistent with experimental observations for finite-length nanodisk structures. For staggered-spacing arrays, the system possesses richer topological phases characterized by the winding numbers $ν=0$, $1$ or $2$, which depend on the averaged zigzag angle and disorder strength. In a sharp contrast to the equal-spacing zigzag arrays, staggered-spacing arrays reveal two types of topological phase transitions induced by the angle disorder, (i) $ν= 0 \leftrightarrow ν= 1$ and (ii) $ν= 1 \leftrightarrow ν= 2$. More importantly, the spectrum of staggered-spacing arrays may remain gapped even in the case of a strong disorder.