论文标题
一般超图的光谱半径在集团数方面
The bounds of the spectral radius of general hypergraphs in terms of clique number
论文作者
论文摘要
一般超图的光谱半径(或无标志性的Laplacian光谱半径)是其邻接(或无迹象的Laplacian)张量的最大模量。在本文中,我们首先在集团数字上获得了一般超图的光谱半径(或无标志性的拉普拉斯光谱半径)的下限。此外,我们介绍了均质多项式与一般超图数量之间的关系。作为一种应用,我们最终从集团数字上获得了一般超图的光谱半径的上限。
The spectral radius (or the signless Laplacian spectral radius) of a general hypergraph is the maximum modulus of the eigenvalues of its adjacency (or its signless Laplacian) tensor. In this paper, we firstly obtain a lower bound of the spectral radius (or the signless Laplacian spectral radius) of general hypergraphs in terms of clique number. Moreover, we present a relation between a homogeneous polynomial and the clique number of general hypergraphs. As an application, we finally obtain an upper bound of the spectral radius of general hypergraphs in terms of clique number.