论文标题

一般超图的光谱半径在集团数方面

The bounds of the spectral radius of general hypergraphs in terms of clique number

论文作者

Duan, Cunxiang, Wang, Ligong

论文摘要

一般超图的光谱半径(或无标志性的Laplacian光谱半径)是其邻接(或无迹象的Laplacian)张量的最大模量。在本文中,我们首先在集团数字上获得了一般超图的光谱半径(或无标志性的拉普拉斯光谱半径)的下限。此外,我们介绍了均质多项式与一般超图数量之间的关系。作为一种应用,我们最终从集团数字上获得了一般超图的光谱半径的上限。

The spectral radius (or the signless Laplacian spectral radius) of a general hypergraph is the maximum modulus of the eigenvalues of its adjacency (or its signless Laplacian) tensor. In this paper, we firstly obtain a lower bound of the spectral radius (or the signless Laplacian spectral radius) of general hypergraphs in terms of clique number. Moreover, we present a relation between a homogeneous polynomial and the clique number of general hypergraphs. As an application, we finally obtain an upper bound of the spectral radius of general hypergraphs in terms of clique number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源