论文标题

固定的Cahn-Hilliard-navier-Stokes方程,用于可压缩流的弥漫接口模型

Stationary Cahn-Hilliard-Navier-Stokes equations for the diffuse interface model of compressible flows

论文作者

Liang, Zhilei, Wang, Dehua

论文摘要

在三维有限的域中,考虑了两个宏观不混溶的牛顿式牛顿流体的固定运动,考虑了扩散界面模型的部分微分方程系统。理事方程式由可压缩流体的固定纳维尔 - 长方形方程组成,以及用于质量浓度差异的固定cahn-hilliard型方程。通过两级近似程序构建了近似解,并且通过弱收敛方法获得了近似解的序列的极限。开发了新的思想和估计,以建立具有广泛绝热指数的弱解决方案的存在。

A system of partial differential equations for a diffusion interface model is considered for the stationary motion of two macroscopically immiscible, viscous Newtonian fluids in a three-dimensional bounded domain. The governing equations consist of the stationary Navier-Stokes equations for compressible fluids and a stationary Cahn-Hilliard type equation for the mass concentration difference. Approximate solutions are constructed through a two-level approximation procedure, and the limit of the sequence of approximate solutions is obtained by a weak convergence method. New ideas and estimates are developed to establish the existence of weak solutions with a wide range of adiabatic exponent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源