论文标题
开放式房间:一个倒数现实主义室内场景数据集的端到端开放框架
OpenRooms: An End-to-End Open Framework for Photorealistic Indoor Scene Datasets
论文作者
论文摘要
我们提出了一个新颖的框架,以创建大规模的室内场景的大规模的影子数据集,并具有地面真相几何,材料,照明和语义。我们的目标是使数据集创建过程可广泛访问,将扫描转换为具有高质量地面真相的光真逼真的数据集,用于外观,布局,语义标签,高质量的空间变化BRDF和复杂的照明,包括直接,间接,间接和可见性组件。这可以使重要应用在反向渲染,场景理解和机器人技术中。我们表明,在拟议的数据集中训练的深网络实现了对真实图像的形状,材料和照明估算的竞争性能,从而实现了逼真的增强现实应用程序,例如对象插入和材料编辑。我们还显示我们的语义标签可用于细分和多任务学习。最后,我们证明我们的框架也可以与物理引擎集成在一起,以创建具有独特地面真理的虚拟机器人环境,例如摩擦系数和与真实场景的对应关系。数据集和所有创建此类数据集的工具将公开可用。
We propose a novel framework for creating large-scale photorealistic datasets of indoor scenes, with ground truth geometry, material, lighting and semantics. Our goal is to make the dataset creation process widely accessible, transforming scans into photorealistic datasets with high-quality ground truth for appearance, layout, semantic labels, high quality spatially-varying BRDF and complex lighting, including direct, indirect and visibility components. This enables important applications in inverse rendering, scene understanding and robotics. We show that deep networks trained on the proposed dataset achieve competitive performance for shape, material and lighting estimation on real images, enabling photorealistic augmented reality applications, such as object insertion and material editing. We also show our semantic labels may be used for segmentation and multi-task learning. Finally, we demonstrate that our framework may also be integrated with physics engines, to create virtual robotics environments with unique ground truth such as friction coefficients and correspondence to real scenes. The dataset and all the tools to create such datasets will be made publicly available.