论文标题
关于同种学领域的长度
On the length of cohomology spheres
论文作者
论文摘要
我们介绍了$ g $ - $ g $空间的长度,即共同体领域,$ g $是$ p $ -torus或torus群体,其中$ p $是质量。结果,在这种情况下,我们获得了Borsuk-Ulam和Bourgin-Yang类型定理。还证明了拓扑歧管的Bourgin-Yang定理的更加清晰版本。另外,我们给出了有关长度的上和下限的一般结果。
We present the length, a numerical cohomological index theory, of $ G $-spaces which are cohomology spheres and $ G $ is a $p$-torus or a torus group, where $p$ is a prime. As a consequence, we obtain Borsuk-Ulam and Bourgin-Yang type theorems in this context. A sharper version of the Bourgin-Yang theorem for topological manifolds is also proved. Also, we give some general results regarding the upper and lower bound for the length.