论文标题

babyai 1.1

BabyAI 1.1

论文作者

Hui, David Yu-Tung, Chevalier-Boisvert, Maxime, Bahdanau, Dzmitry, Bengio, Yoshua

论文摘要

Babyai平台旨在测量培训代理的样本效率,以遵循扎根的说明。 Babyai 1.0提出了通过深层模仿或增强学习训练的代理商的基线结果。 Babyai 1.1以三个次要方式改善了代理商的建筑。这将增强学习样本效率提高了3次,并将最困难水平的模仿学习绩效从77%提高到90.4%。我们希望这些改进提高了Babyai实验的计算效率,并帮助用户设计更好的代理。

The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 presents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源