论文标题

硬负面的例子很难,但有用

Hard negative examples are hard, but useful

论文作者

Xuan, Hong, Stylianou, Abby, Liu, Xiaotong, Pless, Robert

论文摘要

三胞胎损失是远程度量学习的一种极为普遍的方法。优化了来自同一类的图像的表示形式,以在嵌入空间中映射到比不同类别的图像表示。三胞胎损失的大量工作着重于选择要考虑的最有用的图像的三胞胎,从而从同一类中选择不同示例或不同类别的类似示例的策略。先前研究的共识是,通过\ textIt {Hardest}的负面例子进行优化导致训练行为不良。这是一个问题 - 这些最难的负面因素实际上是距离指标无法捕获语义相似性的情况。在本文中,我们描述了三胞胎的空间,并得出了为什么硬否底线使三胞胎损失训练失败。我们为损失功能提供了一个简单的修复,并表明,通过此修复,用硬负面示例进行优化变得可行。这导致了更具概括性的功能,并且图像检索结果超过了具有较高级别内差异的数据集的最佳技术状态。

Triplet loss is an extremely common approach to distance metric learning. Representations of images from the same class are optimized to be mapped closer together in an embedding space than representations of images from different classes. Much work on triplet losses focuses on selecting the most useful triplets of images to consider, with strategies that select dissimilar examples from the same class or similar examples from different classes. The consensus of previous research is that optimizing with the \textit{hardest} negative examples leads to bad training behavior. That's a problem -- these hardest negatives are literally the cases where the distance metric fails to capture semantic similarity. In this paper, we characterize the space of triplets and derive why hard negatives make triplet loss training fail. We offer a simple fix to the loss function and show that, with this fix, optimizing with hard negative examples becomes feasible. This leads to more generalizable features, and image retrieval results that outperform state of the art for datasets with high intra-class variance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源