论文标题
内部凸起中最贫穷的恒星
The Most Metal-poor Stars in the Inner Bulge
论文作者
论文摘要
凸起是银河系中最古老的组成部分。由于对银河系形成的大量模拟预测,在紧密绑定的轨道上发现了给定金属性的最古老的恒星,因此银河系的最古老的恒星可能是内部凸起的金属贫困的恒星,带有小启示剂(即$ r _ {\ r _ {\ mathrm {apo}}} \ sillsimsim4 $ kpc)。过去,由于沿着视线向内部凸起的极端变红和灭绝,无法找到具有这些特性的恒星。我们已经在Spitzer/瞥见数据上使用了Schlaufman&Casey(2014)的中国金属贫困之星的选择来克服这些问题,并针对AAT/AAOMEGA的中等分辨率光谱型候选候选金属贫困巨头。我们使用这些数据选择了三个确认的金属贫困巨头($ [\ Mathrm {fe/h}] = - 3.15,-2.56,-2.03 $)进行后续高分辨率麦哲伦/麦克光谱。使用GAIA DR2天文学和我们测得的径向速度的综合轨道分析证实,这些恒星是紧密结合的内部凸起恒星。我们确定了每个恒星的元素丰度,并在我们最贫穷的恒星中发现了相对于铁的高钛和铁峰丰度。我们提出,我们检测到的独特的丰度签名是Co White Dwarf的Chandrasekhar-Mas热核超新星中核合成的产物,从氦气中积聚,延迟时间约为10 Myr。即使预计在凸起中会迅速发生化学演化,但在新生银河系的核心中,强烈的恒星形成显然能够产生至少一个chandrasekhar-mas热核超新星祖细胞,然后在化学演化之前,化学演化超过$ [\ mathrm {fe/h}] \ sim-3 $。
The bulge is the oldest component of the Milky Way. Since numerous simulations of Milky Way formation have predicted that the oldest stars at a given metallicity are found on tightly bound orbits, the Galaxy's oldest stars are likely metal-poor stars in the inner bulge with small apocenters (i.e., $R_{\mathrm{apo}}\lesssim4$ kpc). In the past, stars with these properties have been impossible to find due to extreme reddening and extinction along the line of sight to the inner bulge. We have used the mid-infrared metal-poor star selection of Schlaufman & Casey (2014) on Spitzer/GLIMPSE data to overcome these problems and target candidate inner bulge metal-poor giants for moderate-resolution spectroscopy with AAT/AAOmega. We used those data to select three confirmed metal-poor giants ($[\mathrm{Fe/H}]=-3.15,-2.56,-2.03$) for follow-up high-resolution Magellan/MIKE spectroscopy. A comprehensive orbit analysis using Gaia DR2 astrometry and our measured radial velocities confirms that these stars are tightly bound inner bulge stars. We determine the elemental abundances of each star and find high titanium and iron-peak abundances relative to iron in our most metal-poor star. We propose that the distinct abundance signature we detect is a product of nucleosynthesis in the Chandrasekhar-mass thermonuclear supernova of a CO white dwarf accreting from a helium star with a delay time of about 10 Myr. Even though chemical evolution is expected to occur quickly in the bulge, the intense star formation in the core of the nascent Milky Way was apparently able to produce at least one Chandrasekhar-mass thermonuclear supernova progenitor before chemical evolution advanced beyond $[\mathrm{Fe/H}]\sim-3$.