论文标题

HEU情感:一个大规模数据库,用于野外多模式情感识别

HEU Emotion: A Large-scale Database for Multi-modal Emotion Recognition in the Wild

论文作者

Chen, Jing, Wang, Chenhui, Wang, Kejun, Yin, Chaoqun, Zhao, Cong, Xu, Tao, Zhang, Xinyi, Huang, Ziqiang, Liu, Meichen, Yang, Tao

论文摘要

野生环境中情感计算的研究是基于数据库的基础。在现实世界中,现有的多模式情绪数据库很少且小,主题数量有限,单语言表示。为了满足这一要求,我们收集,注释并准备发布新的自然状态视频数据库(称为HEU Emotion)。 HEU情感总共包含19,004个视频剪辑,根据数据源分为两个部分。第一部分包含从Tumblr,Google和Giphy下载的视频,其中包括10种情感和两种方式(面部表情和身体姿势)。第二部分包括从电影,电视连续剧和综艺节目中手动拍摄的语料库,其中包括10种情感和三种方式(面部表情,身体姿势和情感语音)。 HEU情绪是迄今为止最广泛的多模式情感数据库,拥有9,951个受试者。为了提供情感识别的基准,我们使用了许多传统的机器学习和深度学习方法来评估HEU情绪。我们提出了一个多模式的注意模块,以适应多模式特征。多模式融合后,两部分的识别精度比单模式面部表达识别的识别精度分别增加了2.19%和4.01%。

The study of affective computing in the wild setting is underpinned by databases. Existing multimodal emotion databases in the real-world conditions are few and small, with a limited number of subjects and expressed in a single language. To meet this requirement, we collected, annotated, and prepared to release a new natural state video database (called HEU Emotion). HEU Emotion contains a total of 19,004 video clips, which is divided into two parts according to the data source. The first part contains videos downloaded from Tumblr, Google, and Giphy, including 10 emotions and two modalities (facial expression and body posture). The second part includes corpus taken manually from movies, TV series, and variety shows, consisting of 10 emotions and three modalities (facial expression, body posture, and emotional speech). HEU Emotion is by far the most extensive multi-modal emotional database with 9,951 subjects. In order to provide a benchmark for emotion recognition, we used many conventional machine learning and deep learning methods to evaluate HEU Emotion. We proposed a Multi-modal Attention module to fuse multi-modal features adaptively. After multi-modal fusion, the recognition accuracies for the two parts increased by 2.19% and 4.01% respectively over those of single-modal facial expression recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源