论文标题

严格旋转完美的流体星,$ 2+1 $尺寸

Rigidly rotating perfect fluid stars in $2+1$ dimensions

论文作者

Gundlach, Carsten, Bourg, Patrick

论文摘要

Cataldo发现在2+1个尺寸中,所有刚性旋转的自我修饰的完美流体溶液,具有负宇宙常数$λ$,因为密度为先验的密度是特定径向坐标的函数。我们将这些解决方案重写为标准的极性坐标,用于状态$ p(ρ)$的任意正压方程。对于任何给定的状态方程式,我们发现具有常规中心和有限的总质量$ m $和Angular Momentum $ J $(严格旋转的星星)的两参数解决方案家族。对于状态的分析方程,该解决方案是分析性的,除了表面,但包括中心。定义无量纲的自旋$ \ tilde J:= \ sqrt {-λ} \,j $,在区域中,每个$(\ tilde j,m)$ cy $ | \ tilde j | -1 <m <m <| \ tilde j | $ cys $ | \ tilde j | -1 <m <| \ tilde j | $ | \ tilde J |> | m | $。在黑洞区域的相邻紧凑部分$ | \ tilde j | <m $(其范围取决于状态方程),每个$(\ tilde j,m)$恰好有两个解决方案。因此,在所有三类BTZ溶液(黑洞,点粒子和超螺旋)中,外部解决方案都存在,但并非所有可能的$(\ tilde j,m)$的所有可能值都可以用作恒星。无论$ \ tilde j $和$ m $的值如何,所有状态方程的全明星的因果结构都是反de保姆空间,没有水平或封闭的时间表曲线。

Cataldo has found all rigidly rotating self-gravitating perfect fluid solutions in 2+1 dimensions with a negative cosmological constant $Λ$, for a density that is specified a priori as a function of a certain radial coordinate. We rewrite these solutions in standard polar-radial coordinates, for an arbitrary barotropic equation of state $p(ρ)$. For any given equation of state, we find the two-parameter family of solutions with a regular centre and finite total mass $M$ and angular momentum $J$ (rigidly rotating stars). For analytic equations of state, the solution is analytic except at the surface, but including at the centre. Defining the dimensionless spin $\tilde J:=\sqrt{-Λ}\,J$, there is precisely one solution for each $(\tilde J,M)$ in the region $|\tilde J|-1<M<|\tilde J|$, which consists of parts of the point particle region $M<-|\tilde J|$ and overspinning regions $|\tilde J|>|M|$. In an adjacent compact part of the black hole region $|\tilde J|<M$ (whose extent depends on the equation of state), there are precisely two solutions for each $(\tilde J,M)$. Hence exterior solutions exist in all three classes of BTZ solution (black hole, point particle and overspinning), but not all possible values of $(\tilde J,M)$ can be realised as stars. Regardless of the values of $\tilde J$ and $M$, the causal structure of all stars for all equations of state is that of anti-de Sitter space, without horizons or closed timelike curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源