论文标题

平滑ap:平滑通往大型图像检索的路径

Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval

论文作者

Brown, Andrew, Xie, Weidi, Kalogeiton, Vicky, Zisserman, Andrew

论文摘要

优化基于排名的度量,例如平均精度(AP),由于它是不可差异的事实,因此臭名昭著,因此无法使用梯度降低方法直接优化。为此,我们引入了一个目标,该目标优化了AP的平滑近似值,即平滑-AP。 Smooth-AP是一个插件的目标功能,可以通过简单而优雅的实现对深层网络进行端到端的培训。我们还提供了一个分析,说明为什么直接优化基于排名的AP指标提供了比其他深度度量学习损失的好处。我们对标准检索基准进行了平滑-AP:斯坦福在线产品和车辆,并在大规模数据集上进行评估:inaturalist for Fine Graining类别检索,而VGGFACE2和IJB-C进行面部检索。在所有情况下,我们都会改善最先进的性能,尤其是对于大型数据集,从而证明了平滑-AP对现实世界情景的有效性和可扩展性。

Optimising a ranking-based metric, such as Average Precision (AP), is notoriously challenging due to the fact that it is non-differentiable, and hence cannot be optimised directly using gradient-descent methods. To this end, we introduce an objective that optimises instead a smoothed approximation of AP, coined Smooth-AP. Smooth-AP is a plug-and-play objective function that allows for end-to-end training of deep networks with a simple and elegant implementation. We also present an analysis for why directly optimising the ranking based metric of AP offers benefits over other deep metric learning losses. We apply Smooth-AP to standard retrieval benchmarks: Stanford Online products and VehicleID, and also evaluate on larger-scale datasets: INaturalist for fine-grained category retrieval, and VGGFace2 and IJB-C for face retrieval. In all cases, we improve the performance over the state-of-the-art, especially for larger-scale datasets, thus demonstrating the effectiveness and scalability of Smooth-AP to real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源