论文标题

随机图中的颜色偏向汉密尔顿周期

Colour-biased Hamilton cycles in random graphs

论文作者

Gishboliner, Lior, Krivelevich, Michael, Michaeli, Peleg

论文摘要

我们证明,随机图$ g(n,p)$,$ p $高于哈密顿性阈值,通常是使其边缘的任何$ r $颜色的颜色,存在至少$(2/(2/(r+ 1)-o(1)-o(1)-O(1))n $相同颜色的汉密尔顿周期。该估计值在渐近上是最佳的。

We prove that a random graph $G(n,p)$, with $p$ above the Hamiltonicity threshold, is typically such that for any $r$-colouring of its edges there exists a Hamilton cycle with at least $(2/(r+ 1)-o(1))n$ edges of the same colour. This estimate is asymptotically optimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源