论文标题

用于数据保护和隐私的模型驱动工程:GDPR的应用和经验

Model Driven Engineering for Data Protection and Privacy: Application and Experience with GDPR

论文作者

Torre, Damiano, Alferez, Mauricio, Soltana, Ghanem, Sabetzadeh, Mehrdad, Briand, Lionel

论文摘要

在欧洲乃至全球,一般数据保护法规(GDPR)在面对新技术发展的情况下为个人提供了有关其个人数据的保护。 GDPR被广泛视为数据保护和隐私法规的基准,该法规协调了欧洲的数据隐私法。尽管GDPR对个人非常有益,但它对组织监视或存储个人信息的组织面临重大挑战。由于目前没有具有广泛工业适用性的自动解决方案,因此组织别无选择,只能进行昂贵的手动审核以确保GDPR合规性。在本文中,我们提出了一个完整的GDPR UML模型,作为设计用于检查GDPR合规性的自动化方法的第一步。鉴于GDPR的实际应用受欧盟成员国的国家法律的影响,我们建议对GDPR,通用和专业化的两层描述。在本文中,我们提供了(1)我们开发的GDPR概念模型,我们从其类别到GDPR的完全可追溯性,(2)一个词汇表,旨在帮助了解该模型的词汇,(3)对GDPR的35个遵守规则的简单描述,以及在OCL中的编码以及20个变异点源自GDPR的代码,并获得了GDPR的20个变量。我们进一步提出了我们在建模努力,从中学到的教训以及未来研究方向所面临的挑战。

In Europe and indeed worldwide, the General Data Protection Regulation (GDPR) provides protection to individuals regarding their personal data in the face of new technological developments. GDPR is widely viewed as the benchmark for data protection and privacy regulations that harmonizes data privacy laws across Europe. Although the GDPR is highly beneficial to individuals, it presents significant challenges for organizations monitoring or storing personal information. Since there is currently no automated solution with broad industrial applicability, organizations have no choice but to carry out expensive manual audits to ensure GDPR compliance. In this paper, we present a complete GDPR UML model as a first step towards designing automated methods for checking GDPR compliance. Given that the practical application of the GDPR is influenced by national laws of the EU Member States, we suggest a two-tiered description of the GDPR, generic and specialized. In this paper, we provide (1) the GDPR conceptual model we developed with complete traceability from its classes to the GDPR, (2) a glossary to help understand the model, (3) the plain-English description of 35 compliance rules derived from GDPR along with their encoding in OCL, and (4) the set of 20 variations points derived from GDPR to specialize the generic model. We further present the challenges we faced in our modeling endeavor, the lessons we learned from it, and future directions for research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源