论文标题

注意:时空注意细胞搜索视频分类

AttentionNAS: Spatiotemporal Attention Cell Search for Video Classification

论文作者

Wang, Xiaofang, Xiong, Xuehan, Neumann, Maxim, Piergiovanni, AJ, Ryoo, Michael S., Angelova, Anelia, Kitani, Kris M., Hua, Wei

论文摘要

卷积操作有两个局限性:(1)在将同一滤波器应用于所有位置时,请勿明确模型在何处焦点,并且(2)不适合对长期依赖性进行建模,因为它们仅在小社区上工作。虽然这两种限制都可以通过注意力操作来缓解,但是许多设计选择仍有待确定的注意,尤其是在将注意力应用于视频时。为了将注意力应用于视频的原则方式,我们解决了时空注意细胞搜索的任务。我们为时空注意细胞提出了一个新颖的搜索空间,该搜索算法可以灵活地探索细胞中的各种设计选择。可以将发现的注意细胞无缝地插入现有的骨干网络,例如i3d或s3d,并在Kinetics-600和MIT数据集中将视频分类精度提高了2%以上。发现的注意细胞在两个数据集上都超过了非本地块,并且在不同的模态,骨干和数据集上表现出强烈的概括。将注意力单元插入I3D-R50中均可在两个数据集上产生最先进的性能。

Convolutional operations have two limitations: (1) do not explicitly model where to focus as the same filter is applied to all the positions, and (2) are unsuitable for modeling long-range dependencies as they only operate on a small neighborhood. While both limitations can be alleviated by attention operations, many design choices remain to be determined to use attention, especially when applying attention to videos. Towards a principled way of applying attention to videos, we address the task of spatiotemporal attention cell search. We propose a novel search space for spatiotemporal attention cells, which allows the search algorithm to flexibly explore various design choices in the cell. The discovered attention cells can be seamlessly inserted into existing backbone networks, e.g., I3D or S3D, and improve video classification accuracy by more than 2% on both Kinetics-600 and MiT datasets. The discovered attention cells outperform non-local blocks on both datasets, and demonstrate strong generalization across different modalities, backbones, and datasets. Inserting our attention cells into I3D-R50 yields state-of-the-art performance on both datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源