论文标题
Leśniewski的Epsilon中的声音解释在模态逻辑KTB中
A sound interpretation of Leśniewski's epsilon in modal logic KTB
论文作者
论文摘要
在本文中,我们将证明以下翻译$ i^m $来自命题片段$ \ bf l_1 l_1 $leśniewski的本体论对模式逻辑$ \ bf ktb $都是合理的:对于任何公式$ $ ϕ $ and $ \ bf l_1 $,它定义了 \ smallskip (m1)$ i^m(ϕ \veeψ)$ = $ i^m(ϕ)\ vee i^m(ψ),$ (m2)$ i^m(\ neg ϕ)$ = $ \ neg i^m(ϕ),$ (m3)$ i^m(εab)$ = $ \ diamond p_a \ supset p_a。 \ wedge。 \ box p_a \ supset \ box p_b。 \ wedge。 \钻石P_B \ supset P_A,$ \ smallskip \ noindent $ p_a $和$ p_b $是命题变量,分别对应于名称变量$ a $ a $ a $ a $ a $ a和$ b $。在最后一节中,我们将提出一些开放的问题和我的猜想。
In this paper, we shall show that the following translation $I^M$ from the propositional fragment $\bf L_1$ of Leśniewski's ontology to modal logic $\bf KTB$ is sound: for any formula $ϕ$ and $ψ$ of $\bf L_1$, it is defined as \smallskip (M1) $I^M(ϕ\vee ψ)$ = $I^M(ϕ) \vee I^M(ψ),$ (M2) $I^M(\neg ϕ)$ = $\neg I^M(ϕ),$ (M3) $I^M(εab)$ = $\Diamond p_a \supset p_a . \wedge . \Box p_a \supset \Box p_b . \wedge . \Diamond p_b \supset p_a,$ \smallskip \noindent where $p_a$ and $p_b$ are propositional variables corresponding to the name variables $a$ and $b$, respectively. In the last section, we shall give some open problems and my conjectures.