论文标题

基于注意的多个实例学习血细胞疾病分类

Attention based Multiple Instance Learning for Classification of Blood Cell Disorders

论文作者

Sadafi, Ario, Makhro, Asya, Bogdanova, Anna, Navab, Nassir, Peng, Tingying, Albarqouni, Shadi, Marr, Carsten

论文摘要

红细胞高度可变形,并以各种形状存在。在血细胞疾病中,只有所有细胞的一部分在形态上改变并与诊断有关。但是,所有细胞的手动标记都是费力的,复杂的,并且引入了专家间的变异性。我们提出了一种基于注意力的多个实例学习方法,以对患有血细胞疾病的患者的血液样本进行分类。使用R-CNN结构检测细胞。随着每个细胞提取的特征,多个实例学习方法将患者样本分为四个血细胞疾病中的一个。注意机制提供了每个细胞对整体分类的贡献的量度,并显着提高了网络的分类准确性以及对医学专家的解释性。

Red blood cells are highly deformable and present in various shapes. In blood cell disorders, only a subset of all cells is morphologically altered and relevant for the diagnosis. However, manually labeling of all cells is laborious, complicated and introduces inter-expert variability. We propose an attention based multiple instance learning method to classify blood samples of patients suffering from blood cell disorders. Cells are detected using an R-CNN architecture. With the features extracted for each cell, a multiple instance learning method classifies patient samples into one out of four blood cell disorders. The attention mechanism provides a measure of the contribution of each cell to the overall classification and significantly improves the network's classification accuracy as well as its interpretability for the medical expert.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源