论文标题
一般$ε$的Fermions的Aftraton有效潜力
Inflaton Effective Potential from Fermions for General $ε$
论文作者
论文摘要
我们准确地近似于Yukawa耦合费米对通货膨胀几何的有效潜力的贡献,并具有一般的第一个慢速参数$ε(t)$。对于$ε= 0 $,我们的最终结果与很久以前在保姆背景上完成的坎德拉斯和雷恩的著名计算一致,并且这两个计算都逐渐归因于科尔曼和温伯格在平坦的限制下的结果。我们的结果包含一小部分,非局部取决于通货膨胀的几何形状。即使在数字上较大的本地部分中,$ε$依赖性的几乎没有采用RICCI标量的形式。我们讨论这些更正对通货膨胀的含义。
We accurately approximate the contribution of a Yukawa-coupled fermion to the inflaton effective potential for inflationary geometries with a general first slow roll parameter $ε(t)$. For $ε= 0$ our final result agrees with the famous computation of Candelas and Raine done long ago on de Sitter background, and both computations degenerate to the result of Coleman and Weinberg in the flat space limit. Our result contains a small part that depends nonlocally on the inflationary geometry. Even in the numerically larger local part, very little of the $ε$ dependence takes the form of Ricci scalars. We discuss the implications of these corrections for inflation.