论文标题

在同等输入和单调马尔可夫矩阵上

On equal-input and monotone Markov matrices

论文作者

Baake, Michael, Sumner, Jeremy

论文摘要

重新审视了同等投入和单调马尔可夫矩阵的实际重要类别,特别关注嵌入性,无限的划分性和相互关系。在此过程中,获得了经典的马尔可夫嵌入问题的几个唯一性结果。为了实现我们的结果,我们需要采用各种代数和几何工具,包括通勤性,置换不变性和凸度。在几个分界结果中特别相关的是Markov矩阵,即基金会。

The practically important classes of equal-input and of monotone Markov matrices are revisited, with special focus on embeddability, infinite divisibility, and mutual relations. Several uniqueness results for the classic Markov embedding problem are obtained in the process. To achieve our results, we need to employ various algebraic and geometric tools, including commutativity, permutation invariance and convexity. Of particular relevance in several demarcation results are Markov matrices that are idempotents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源