论文标题
电子 - 音波系统的有限温度密度 - 马丁重新归一化组方法:热力学和荷斯坦 - 棕榈光谱函数
Finite-temperature density-matrix renormalization group method for electron-phonon systems: Thermodynamics and Holstein-polaron spectral functions
论文作者
论文摘要
我们使用密度 - 矩阵重质化组方法研究了荷斯坦极化子的热力学和有限温度光谱功能。我们的方法将纯化和局部优化(LBO)结合在一起,作为对声子模式的有效处理。 LBO是一种依赖于通过对角度降低密度矩阵对角度来找到最佳局部基础的方案。通过将状态转换为此基础,可以将当地的希尔伯特空间截断,而对于广泛的参数而言,准确性丧失的准确性丧失。在这项工作中,我们着重于荷斯坦模型的大型和小极地点之间的跨界状态。在这里,不存在分析溶液,我们表明,低温下的热期望值与声子希尔伯特空间截断无关,只要选择了足够大。然后,我们证明我们可以提取电子光谱函数,并与有限温度的lanczos方法的结果建立一致性。我们还计算电子发射光谱和声子光谱函数,并表明所有计算都通过局部基础优化显着简化。我们观察到,随着温度的升高,电子发射光谱将光谱重量转移到较低的频率和较大的动量。声子光谱函数经历了较大的宽扩大,并且巨大动量的极峰会显着扁平,几乎完全合并到自由峰峰中。
We investigate the thermodynamics and finite-temperature spectral functions of the Holstein polaron using a density-matrix renormalization group method. Our method combines purification and local basis optimization (LBO) as an efficient treatment of phonon modes. LBO is a scheme which relies on finding the optimal local basis by diagonalizing the local reduced density matrix. By transforming the state into this basis, one can truncate the local Hilbert space with a negligible loss of accuracy for a wide range of parameters. In this work, we focus on the crossover regime between large and small polarons of the Holstein model. Here, no analytical solution exists and we show that the thermal expectation values at low temperatures are independent of the phonon Hilbert space truncation provided the basis is chosen large enough. We then demonstrate that we can extract the electron spectral function and establish consistency with results from a finite-temperature Lanczos method. We additionally calculate the electron emission spectrum and the phonon spectral function and show that all the computations are significantly simplified by the local basis optimization. We observe that the electron emission spectrum shifts spectral weight to both lower frequencies and larger momenta as the temperature is increased. The phonon spectral function experiences a large broadening and the polaron peak at large momenta gets significantly flattened and merges almost completely into the free-phonon peak.