论文标题

使用假设转移学习的人重新识别的人重新识别摄像机

Camera On-boarding for Person Re-identification using Hypothesis Transfer Learning

论文作者

Ahmed, Sk Miraj, Lejbølle, Aske R, Panda, Rameswar, Roy-Chowdhury, Amit K.

论文摘要

人重新识别的大多数现有方法都考虑了静态摄像机数量固定的静态设置。一个有趣的方向很少受到关注,它是探索相机网络的动态性质,在该网络上,人们试图在上板上新相机后改编现有的重新识别模型,但额外的努力很少。在亲自识别的人身份证中提出了一些最近提出的方法,这些方法试图通过假设现有网络中的标记数据在添加新相机时可用来解决此问题。这是一个有力的假设,因为可能存在一些隐私问题,而这些问题可能无法访问这些数据。相反,基于以下事实,即可以使用假设转移学习的有效的模型适应方法来存储学习的重新识别模型,从而减轻了任何数据隐私问题,旨在仅使用源模型和有限的标记数据传输知识,但没有使用现有网络中的任何源摄像机数据传输知识。我们的方法通过找到多个源模型的最佳加权组合来最大程度地减少负转移的效果,以转移知识。对四个具有可变数量相机的挑战性基准数据集进行了广泛的实验,证明了我们提出的方法对最新方法的功效。

Most of the existing approaches for person re-identification consider a static setting where the number of cameras in the network is fixed. An interesting direction, which has received little attention, is to explore the dynamic nature of a camera network, where one tries to adapt the existing re-identification models after on-boarding new cameras, with little additional effort. There have been a few recent methods proposed in person re-identification that attempt to address this problem by assuming the labeled data in the existing network is still available while adding new cameras. This is a strong assumption since there may exist some privacy issues for which one may not have access to those data. Rather, based on the fact that it is easy to store the learned re-identifications models, which mitigates any data privacy concern, we develop an efficient model adaptation approach using hypothesis transfer learning that aims to transfer the knowledge using only source models and limited labeled data, but without using any source camera data from the existing network. Our approach minimizes the effect of negative transfer by finding an optimal weighted combination of multiple source models for transferring the knowledge. Extensive experiments on four challenging benchmark datasets with a variable number of cameras well demonstrate the efficacy of our proposed approach over state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源