论文标题

Borwein,Bailey和Girgensohn的正弦无限系列的收敛

Convergence of a sinusoidal infinite series from Borwein, Bailey, and Girgensohn

论文作者

Boppana, Ravi B.

论文摘要

Borwein,Bailey和Girgensohn(2004)询问以下无限系列是否收敛:$(\ frac {2} {3} {3} {3} + \ frac {1} {1} {3} {3} \ sin n)我们证明了他们的系列收敛。证明使用$π$的非理性度量。

Borwein, Bailey, and Girgensohn (2004) asked whether the following infinite series converges: the sum of $(\frac{2}{3} + \frac{1}{3} \sin n)^n / n$ over all positive integers $n$. We prove that their series converges. The proof uses the irrationality measure of $π$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源