论文标题
Borwein,Bailey和Girgensohn的正弦无限系列的收敛
Convergence of a sinusoidal infinite series from Borwein, Bailey, and Girgensohn
论文作者
论文摘要
Borwein,Bailey和Girgensohn(2004)询问以下无限系列是否收敛:$(\ frac {2} {3} {3} {3} + \ frac {1} {1} {3} {3} \ sin n)我们证明了他们的系列收敛。证明使用$π$的非理性度量。
Borwein, Bailey, and Girgensohn (2004) asked whether the following infinite series converges: the sum of $(\frac{2}{3} + \frac{1}{3} \sin n)^n / n$ over all positive integers $n$. We prove that their series converges. The proof uses the irrationality measure of $π$.