论文标题

时间频散射准确地模拟了乐器演奏技术之间的听觉相似性

Time-Frequency Scattering Accurately Models Auditory Similarities Between Instrumental Playing Techniques

论文作者

Lostanlen, Vincent, El-Hajj, Christian, Rossignol, Mathias, Lafay, Grégoire, Andén, Joakim, Lagrange, Mathieu

论文摘要

在古典和民间环境中,颤音,吉利桑德斯和颤音等器乐演奏技巧通常表示音乐表现力。但是,大多数现有的音乐相似性检索方法都无法描述超过所谓的“普通”技术,使用仪器标识作为音色质量的代理,并且不允许对新主题的感知特质进行自定义。在本文中,我们要求31名人类受试者将78个孤立的音符组织成一组音色群集。分析他们的反应表明,与单独的工具或弹奏技巧相比,音色感知在更灵活的分类法内运作。此外,我们提出了一个机器侦听模型,以恢复跨乐器,静音和技术的听觉相似性集群图。我们的模型依赖于联合时间 - 频率散射特征将光谱调制作为声学特征。此外,它通过大规模细边距(LMNN)度量学习算法最小化群集图中的三重态损耗。在9346个孤立笔记的数据集上,我们报告了第五(ap@5)的最先进的平均精度为$ 99.0 \%\%\ pm1 $。一项消融研究表明,消除联合时间 - 频率散射变换或公制学习算法明显降低了性能。

Instrumental playing techniques such as vibratos, glissandos, and trills often denote musical expressivity, both in classical and folk contexts. However, most existing approaches to music similarity retrieval fail to describe timbre beyond the so-called "ordinary" technique, use instrument identity as a proxy for timbre quality, and do not allow for customization to the perceptual idiosyncrasies of a new subject. In this article, we ask 31 human subjects to organize 78 isolated notes into a set of timbre clusters. Analyzing their responses suggests that timbre perception operates within a more flexible taxonomy than those provided by instruments or playing techniques alone. In addition, we propose a machine listening model to recover the cluster graph of auditory similarities across instruments, mutes, and techniques. Our model relies on joint time--frequency scattering features to extract spectrotemporal modulations as acoustic features. Furthermore, it minimizes triplet loss in the cluster graph by means of the large-margin nearest neighbor (LMNN) metric learning algorithm. Over a dataset of 9346 isolated notes, we report a state-of-the-art average precision at rank five (AP@5) of $99.0\%\pm1$. An ablation study demonstrates that removing either the joint time--frequency scattering transform or the metric learning algorithm noticeably degrades performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源