论文标题
穿着的最小表面$ _4 $
Dressed Minimal Surfaces in AdS$_4$
论文作者
论文摘要
我们将任意数量的敷料转化应用于AD中的静态最小表面(4)。有趣的是,具有最简单的敷料因子的单个敷料转化使后者与DS中的欧几里得非线性Sigma模型的溶液相关联(3)。我们以最小表面的最小表面为面积元素提供了一种表达式,并对着装表面的边界区域发表评论。最后,我们将上述形式主义应用于椭圆形的最小表面并获得新的表面。
We apply an arbitrary number of dressing transformations to a static minimal surface in AdS(4). Interestingly, a single dressing transformation, with the simplest dressing factor, interrelates the latter to solutions of the Euclidean non linear sigma model in dS(3). We present an expression for the area element of the dressed minimal surface in terms of that of the initial one and comment on the boundary region of the dressed surface. Finally, we apply the above formalism to the elliptic minimal surfaces and obtain new ones.